Group algebras whose units satisfy a Laurent polynomial identity
نویسندگان
چکیده
منابع مشابه
Group Algebras Whose Involutory Units Commute
Abstract. Let K be a field of characteristic 2 and G a nonabelian locally finite 2-group. Let V (KG)be the group of units with augmentation 1 in the group algebra KG. An explicit list of groups is given, and it is proved that all involutions in V (KG) commute with each other if and only if G is isomorphic to one of the groups on this list. In particular, this property depends only on G and not ...
متن کاملGroup Algebras Whose Group of Units Is Powerful
A p-group is called powerful if every commutator is a product of p th powers when p is odd and a product of fourth powers when p = 2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.
متن کاملProperties of Polynomial Identity Quantized Weyl Algebras
In this work on Polynomial Identity (PI) quantized Weyl algebras we begin with a brief survey of Poisson geometry and quantum cluster algebras, before using these as tools to classify the possible centers of such algebras in two different ways. In doing so we explicitly calculate the formulas of the discriminants of these algebras in terms of a general class of central polynomial subalgebras. F...
متن کاملTwisted Group Rings Whose Units Form an Fc-group
Let U(KλG) be the group of units of an infinite twisted group algebra KλG over a field K. We describe the maximal FC-subgroup of U(KλG) and give a characterization of U(KλG) with finitely conjugacy classes. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus’ theorem.
متن کاملLaurent phenomenon algebras
We generalize Fomin and Zelevinsky’s cluster algebras by allowing exchange polynomials to be arbitrary irreducible polynomials, rather than binomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 2018
ISSN: 0003-889X,1420-8938
DOI: 10.1007/s00013-018-1223-8